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Throughout the world, two systems of measurement dominate: 
the English system and the metric system. Today, the United 

States is one of only a few countries that employ the English system.
The English system uses the pound as the unit of weight, the 

foot as the unit of length, and the gallon as the unit of capacity. 
In the English system, for example, 1 foot equals 12 inches, 1 yard 
equals 36 inches, and 1 mile equals 5,280 feet or 1,760 yards.

The metric system uses the gram as the unit of weight, the 
metre as the unit of length, and the litre as the unit of capacity. In 
the metric system, 1 metre equals 10 decimetres, 100 centimetres, 
or 1,000 millimetres. A kilometre equals 1,000 metres. The metric 
system, unlike the English system, uses a base of 10; thus, it is easy 
to convert from one unit to another. To convert from one unit to 
another in the English system, you must memorize or look up the 
values.

In the late 1970s, the Eleventh General Conference on Weights 
and Measures described and adopted the Systeme International 
(SI) d’Unites. Conference participants based the SI system on the 
metric system and designed it as an international standard of 
measurement.

The Rotary Drilling Series gives both English and SI units. 
And because the SI system employs the British spelling of many 
of the terms, the book follows those spelling rules as well. The unit 
of length, for example, is metre, not meter. (Note, however, that 
the unit of weight is gram, not gramme.)

To aid U.S. readers in making and understanding the conver-
sion system, we include the table on the next page.

Units of Measurement



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	 Quantity 		  Multiply 	 To Obtain 
	 or Property	 English Units	 English Units By	 These SI Units

	 Length, 	 inches (in.)	 25.4	 millimetres (mm)
	 depth, 		  2.54	 centimetres (cm)
	 or height	 feet (ft)	 0.3048	 metres (m)
		  yards (yd)	 0.9144	 metres (m)
		  miles (mi)	 1609.344	 metres (m)
			   1.61	 kilometres (km)
	Hole and pipe diameters, bit size	 inches (in.)	 25.4	 millimetres (mm)
	 Drilling rate	 feet per hour (ft/h)	 0.3048	 metres per hour (m/h)
	 Weight on bit	 pounds (lb)	 0.445	 decanewtons (dN)	
	 Nozzle size	 32nds of an inch	 0.8	 millimetres (mm)	
		  barrels (bbl)	 0.159	 cubic metres (m3)
			   159	 litres (L)
		  gallons per stroke (gal/stroke)	 0.00379	 cubic metres per stroke (m3/stroke)
		  ounces (oz)	 29.57	 millilitres (mL)
	 Volume	 cubic inches (in.3)	 16.387	 cubic centimetres (cm3)
		  cubic feet (ft3)	 28.3169	 litres (L)
			   0.0283	 cubic metres (m3)	
		  quarts (qt)	 0.9464	 litres (L)
		  gallons (gal)	 3.7854	 litres (L)
		  gallons (gal)	 0.00379	 cubic metres (m3)
		  pounds per barrel (lb/bbl)	 2.895	 kilograms per cubic metre (kg/m3)
		  barrels per ton (bbl/tn)	 0.175	 cubic metres per tonne (m3/t)
		  gallons per minute (gpm)	 0.00379	 cubic metres per minute (m3/min)
	 Pump output 	 gallons per hour (gph)	 0.00379	 cubic metres per hour (m3/h)
	 and flow rate	 barrels per stroke (bbl/stroke)	 0.159	 cubic metres per stroke (m3/stroke)
		  barrels per minute (bbl/min)	 0.159	 cubic metres per minute (m3/min)
	 Pressure	 pounds per square inch (psi)	 6.895	 kilopascals (kPa)		
			   0.006895	 megapascals (MPa)

	 Temperature	  degrees Fahrenheit (°F)	     	 degrees Celsius (°C)

	 Thermal gradient	 1°F per 60 feet	  ––	 1°C per 33 metres
		  ounces (oz)	 28.35	 grams (g)
	 Mass (weight)	 pounds (lb)	 453.59	 grams (g)
			   0.4536	 kilograms (kg)
		  tons (tn) 	 0.9072	 tonnes (t)
		  pounds per foot (lb/ft)	 1.488	 kilograms per metre (kg/m)
	 Mud weight	 pounds per gallon (ppg)	 119.82	 kilograms per cubic metre (kg/m3)	
		  pounds per cubic foot (lb/ft3)	 16.0	 kilograms per cubic metre (kg/m3)
	 Pressure gradient	 pounds per square inch		   
		  per foot (psi/ft)	 22.621	 kilopascals per metre (kPa/m)
	 Funnel viscosity	 seconds per quart (s/qt)	 1.057	 seconds per litre (s/L)
	 Yield point	 pounds per 100 square feet (lb/100 ft2)	 0.48	 pascals (Pa)	
	 Gel strength	 pounds per 100 square feet (lb/100 ft2)	 0.48	 pascals (Pa)	
	 Filter cake thickness	 32nds of an inch	 0.8	 millimetres (mm)	
	 Power	 horsepower (hp)	 0.75	 kilowatts (kW)	
		  square inches (in.2)	 6.45	 square centimetres (cm2)
		  square feet (ft2)	 0.0929	 square metres (m2)
	 Area	 square yards (yd2)	 0.8361	 square metres (m2)
		  square miles (mi2)	 2.59	 square kilometres (km2)
		  acre (ac)	 0.40	 hectare (ha)	
	 Drilling line wear	 ton-miles (tn•mi)	 14.317	 megajoules (MJ)
			   1.459	 tonne-kilometres (t•km)
	 Torque	 foot-pounds (ft•lb)	 1.3558	 newton metres (N•m)

°F - 32  
1.8

English-Units-to-SI-Units Conversion Factors

Petr
ole

um
 Exte

ns
ion

-The
 U

niv
ers

ity
 of

 Tex
as

 at
 Aus

tin



1

	 Overview




In this chapter:

•	 The history of the Lucas well at Spindletop

•	 The probable causes of the blowout at the Lucas well

•	 The signs of an imminent well kick that can lead to a blowout

Figure 1.	  Anthony Lucas, 
chief engineer at Spindletop

On January 10, 1901, the blowout of the Lucas well at Spindletop 
near Beaumont, Texas, was spectacular and widely publicized. 

Before the development of blowout preventers (BOP), blowouts were 
common. They were called gushers if they produced oil. 

The Hamill brothers had started drilling the Lucas well three 
months earlier using a new tool called a rotary drill. Because of their 
experience using the rotary drill, the Hamills had been hired by An-
thony F. Lucas and his partners to come to Beaumont to try drilling 
through the sand and rock at Spindletop (fig. 1).

A 6-inch (15.24 centimetres) diameter casing was set at 880 feet 
(268 metres), where it was expected that oil would be found. When 
no oil was struck, the well was deepened to 1,020 feet (310.9 metres). 
The final 140 feet (42.67 metres) of drilling proceeded quickly—much 
faster than had been drilled before. The crew was preparing a new 
bit with 700 feet (213.4 metres) of drill pipe in the hole when the well 
started to unload; that is, drilling mud started flowing from the casing. 	
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Formation Pressure

In this chapter:

•	 Rock formations that can trap oil

•	 The difference between and causes of formation pressure 
and hydrostatic pressure

•	 The causes of formation pressure gradients

•	 How to calculate hydrostatic pressure 

•	 The differences among normal, abnormal, and subnormal 
hydrostatic pressures

•	 The interdependence of formation and hydrostatic pressure 
in well control

•	 The measurement and control of circulating pressures caused 
by drilling fluid and equipment





To classify layers of rock, geologists use a basic subdivision called a 
formation. A formation is a rock unit that is distinctive and consists 

of a certain number of rock strata with comparable or similar proper-
ties. Therefore, the characteristics of formations result in differences 
in the way fluids are trapped (fig. 4).

Formation pressure is the force exerted by fluids in an underground 
rock formation. In drilling operations, formation pressure is measured 
and recorded using a drilled hole at the depth of the formation with 
the well’s surface valves completely closed or shut-in. It is sometimes 
referred to as reservoir pressure. Formation pressure must be care-
fully monitored and controlled during drilling operations. This is an 
important factor in blowout prevention. Petr
ole
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Abnormal-Pressure 
Formations





Shale Compaction

In this chapter:

•	 Shale compaction as a cause of abnormal formation pressure

•	 Common signs and detection methods used to locate abnor-
mal formation pressures

A   	 bnormal formation pressure and lost circulation in unconsolidated
 formations are related problems. Higher than normal formation 

pressure gradients are encountered at varying depths in many loca-
tions. These areas require extra care to be productive and incur ad-
ditional drilling expense. Costly blowouts can occur when abnormal 
pressure zones are unexpectedly penetrated. 

A rock with pores or open spaces is called porous. Hydrocarbons can 
occur only in porous reservoir rocks. A porous rock has a measur-
able quality called porosity. Porosity can be very low, almost zero 
or, in theory, it can be as high as 55% for extremely well-sorted 
(same diameter) rock grains. Because most rocks have grains of 
varying sizes, the practical limit of porosity is usually around 30% 
for sandstone. 
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Kick Detection




In this chapter:

•	 Preliminary events that indicate a kick has been taken

•	 Well-control equipment used to assess and detect a kick 

•	 Some corrective measures used to stop a kick

Drilling abnormally-pressured formations is known to be hazard-
ous, but many well-control problems also happen in normal 

formation pressures. Some problems occur while pipe is being moved 
in or out of the borehole (fig. 22). 

When the first stands of pipe are pulled or tripped out, there 
can be a reduction in bottomhole pressure. This may be caused by the 
cessation of circulation, and perhaps because of swabbing. If there is 
any indication of flow, the well should be shut-in and circulated by 
following standard well-control practices to remove any influx and fill 
the well with clean drilling fluid. If necessary, the mud weight should 
be increased before subsequent attempts to trip the pipe.

Sometimes, the preliminary indications of a kick are almost 
unmistakable. These “positive” indicators include:

•	 Unexplained mud-pit gain
•	 Mud flow with the pumps off
•	 Increase in flow while circulating

In other cases, the indications of a possible kick are ambiguous. 
These “possible” indicators include:

•	 A drilling break, a sudden increase in ROP (rate of penetration)
•	 Decrease in circulating pressure
•	 Shows of gas, oil, or salt water

Strong indicators of a kick 
include:
•	 Unexplained mud-pit gain
•	 Mud flow with the pumps 

off
•	 Increase in flow while 

circulating
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Killing a Well Kick
Onshore





In this chapter:

•	 Steps to control an onshore well kick

•	 Steps to control a well kick while making a trip

•	 Various methods, procedures and calculations used to kill 
a kick

•	 Killing a well kick with the pipe off the bottom of the borehole

•	 Common mistakes made in killing a well kick

By taking immediate action, the driller can minimize the size of a 
kick. Minimizing the size of the kick and can greatly enhance the 

ability of a drilling crew to handle the kick properly. Quick action can 
prevent the situation from escalating into a blowout. 

When a kick is detected, following the proper sequence of steps 
is critical to successful emergency control. Depending on the cause, 
differing methods and procedures may be used to kill a well kick. 
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In this chapter:

•	 Procedures in controlling a kick offshore from a floating rig

•	 Diverter BOP systems 

•	 Procedures for well control with a diverter system

Kick Control in 
Offshore Operations





The procedures for controlling kicks in offshore drilling from a 
floating rig are similar to those for onshore as discussed in the 

previous chapter. Off-
shore may refer to any 
body of water, includ-
ing inland lakes, seas, 
and rivers. There are 
additional steps and 
additional equipment 
with which crewmem-
bers must be familiar 
(fig. 36). 

Figure 36.		 A subsea 
ram-type blowout 
preventer C
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In this chapter:

•	 The dangers of shallow gas formations

•	 Procedures and calculations required to control kicks with 
the drill pipe out of the hole

•	 Well-control problems encountered when stripping into 
the hole

•	 Well-control problems encountered when stripping out of 
the hole

•	 The procedures and equipment used in snubbing operations

•	 The procedures used to control lost circulation

Special Problems in 
Kick Control





Shallow Gas 
FormationsShallow gas formations present a danger because: 

•	 The gas pocket is generally at a depth that allows a potential 
kick to rapidly unload the mud from the wellbore, and 

•	 Shutting in the well might cause the formation to fracture 
and the wellbore fluids to broach all the way to the mud line.

Either of these possibilities can result in a serious well-control 
problem. If a shallow gas kick occurs before enough casing is set, the 
diverter system will divert the flow away from the rig. For a kick in a 
shallow gas formation, the offshore crew should take the same steps 
as those listed for diverting the well in the previous chapter. 
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In this chapter:

•	 The main pieces of equipment used in well control and 
blowout prevention

•	 The purpose and function of each piece of equipment 

•	 Auxiliary and accessory rig equipment that contributes to 
well control

Preventer Equipment





The hydrostatic pressure of the drilling fluid column on the forma-
tion is the primary barrier in preventing a well from blowing out. 

When formation pressure is greater than the hydrostatic pressure of 
the mud column, BOPs and related equipment shut in a well at the 
surface and serve as a second barrier. 

In addition to BOPs, other equipment is used to assist in the con-
trol of well pressure. Chokes and choke manifolds allow a controlled 
removal of the intruded formation fluids from the wellbore. Mud-gas 
separators help conserve drilling fluids while removing the gas from 
the drilling fluids and discharging the gas to the atmosphere. Rotating 
heads permit drilling to continue at an increased ROP in formations 
with high-pressure/low-volume gas flow. 
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Preventer Tests 	
and Drills





In this chapter:

•	 The reasons for BOP pressure testing 

•	 The methods for testing various BOP components

Blowout preventers are emergency equipment. The BOPs are only 
effective if they:
•	 Can handle the pressure involved
•	 Are in good operating condition, and 
•	 Are used correctly

The decision to provide adequate BOPs involves the operating 
company, the drilling contractor and the drilling crews. The drillers 
on the rig are key in the responsibility, but every crewmember should 
know how to operate the preventer equipment and be alert to the signs 
of a well kick. Function testing of the preventers and careful pressure 
testing ensures that everything is in good operating condition and 
ready for use.

Testing of the BOPs to their rated pressure (if equal to or below the 
rating of the wellhead) should be conducted to confirm that the equip-
ment will hold under the given test pressure. All preventers and valves, 
including the choke manifold, should be tested with pressure from the 
upstream side. Therefore, test pressure is applied to the preventer or 
valve from the side normally originating the pressure in a kill situation.

Frequent operational checks and regular pressure tests ensure 
that valves and other components are in good working order. Lubri-
cation, as necessary, ensures easy operation of the equipment in an 
emergency. Regular maintenance is less expensive than replacement 
of an item or the possibly drastic consequences incurred when equip-
ment does not function properly.
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Index 




abnormal formations, 42
abnormal pressure, 28
abnormal-pressure formations
detection of, 28–35
shale compaction, 25–27

accumulators, 128, 132, 133
acoustic travel time, 32
adapter spools, 108
adjustable chokes, 89, 135
American National Standards Institute 	
(ANSI), 109

American Petroleum Institute (API), 106, 109. 
See also API RP 53 (American Petroleum 
Institute standards)

annular blowout preventers, 50, 87–90, 	
115–117

annular space, 13
annulus, 14
ANSI (American National Standards 	
Institute), 109

API RP 53 (American Petroleum Institute 
standards)
accumulator pressure level in blowout 
preventer control unit, 133
blowout preventer working pressure test 
schedule, 154
closing systems speed, 128
for flanges and gaskets, 109
for operating equipment, 128
pressure ratings, 109
recommendations and ratings for blowout 
preventers, 106
for wellhead equipment, 109
working pressures, 136

assemblies
blowout preventers (BOPs), 104, 111, 112, 
113, 128, 150, 154
choke manifold, 145
connection to, 106
high pressure, 108
skid-mounted, 130
testing, 154
valve, 87
working pressure of, 106, 110–111

associated gas, 73
A-suction, 114
auxiliaries
degassers, 144
inside blowout preventers, 142–143
kelly cock, 140–141
mud-flow indicators/sensors, 149
pit-level indicators and pit-volume 	
recorders, 146–147
pump stroke counter, 148
trip tanks, 145

back-pressure, 18
back-pressure valves, 140
balled up bits, 14
barite, 7
bell nipples, 125–126
bits, 1, 14, 94–95
blanket sands, 10
blind flange, 106
blind rams, 89, 121, 122
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blowout assemblies
high pressure, 108
working pressure of, 110–111
blowout preventers (BOPs). See also under 
preventers
annular, 50, 87–90, 115–117
auxiliaries, 142–143
Cameron Type U, 118–119
capabilities of, 104
closure of, 41
components of, 105
control unit, 133
dart type, 142–143
drop type, 142–143
history of, 1
hydraulic fluids for operation of, 129
Hydril-Type GK, 116
Hydril-Type V, 119–120
inside (IBOPs), 142–143
NL Shaffer type, 119–120
pipe ram, 91–92, 115, 117–122
stack, 89

blowouts, 1, 3
borehole, 7
bottomhole pressure (BHP), 3, 12, 84
Boyle, Robert, 45
Boyle’s law, 45
bullhead kill method (bullheading), 67–68, 82
bull plug, 106

Cameron Type U ram preventers, 118–119
cap rock, 42
casing and wellheads, 110–114
casing pressure, 46
casings, 1
casing seats, 22
casing shoes, 20, 110–111
cellar, 114

cementing, 20, 110
cementing unit, 89, 94
cement plugs, 148
centrifugal degassers, 138, 144
centrifugal pumps, 18
chloride increases, 31
choke adjustments, 62
choke lines, 106
choke-manifold friction, 66
chokes. See also constant choke-pressure 
method
adjustable, 89, 135
adjustments, 62
fittings, 134–135
manifold assemblies, 55, 134, 145

circulate-and-weight method, 67
circulating pressure, 14–15
circulation pressure, 94
closed in well, 50
closed reservoirs, 10
closing systems, 128
closing time, 128
closing unit pumps, 87
concurrent method, 67
conductivity, 32
conductor pipe, 44, 78, 113, 117
conductor pipe outlet, 125
connection gas, 31
constant choke-pressure method, 73
constant pit-level method, 72
controlling a well kick while making a trip, 51
controlling kick from a floating rig with 
competent casing set, 79

cross-flow, 98
cup packers, 157–158
cup testers, 157–158
cuttings, 71Petr
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dart type inside blowout preventers, 142–143
decrease in circulating pressure, 43–44
degassers, 138, 144
delay timing, 58
density (unit weight), 7, 8
derrickhand, 3
detection of abnormal pressure, 28–35
chloride increases, 31
drilling rate changes, 28–29
electric log data, 32–33
gas-cut mud, 31
mud temperature increase, 32
shale density, 30
sloughing shale, 30

detection of high formation pressures, 28
d-exponent factor, 29
differential pressure, 28
displacement monitoring, 89
ditches, 125
diverter bop systems, 78
drill collars, 19
drilled show gas, 31, 44
drilled shows, 44
driller’s method, 55–61
drilling break, 3, 28, 42
drilling fluid density, 12
drilling fluids, 7
drilling rate changes, 28–29
drilling spools/flow cross, 114, 122–124
drill pipe. See also blowout preventers (BOPs); 
circulation pressure; full-opening safety 
valves (FOSVs); lost circulation; shut-in 
drill pipe pressure (SIDPP); trips
as a bottomhole pressure gauge, 51–53, 83
displacement, 19, 92
fishing operations, 121
hydrostatic pressure, 13, 44
out of the hole, 82

pipe ram preventers, 117
pressures, 134
pulling/pulled, 44, 145–146
shearing, 118
at Spindletop, Texas, 1–3

drill pipe pressure, 12, 44
drill pipe pressure gauge, 62
drill pipe rubbers, 91
drill-stem (full-opening safety) valves 	
(FOSVs), 143

drill stems, 121
drill string, 14, 51–53
drop type inside blowout 	
preventers, 142–143

dynamic kill method, 68

electric log, 28
electric log data, 32–33, 35
detection of abnormal pressure, 32–33
engineer’s method, 62–67
entrained gas, 54
equivalent circulating density (ECD), 78
excessive mud weight, 73

fill-up line connections, 126
final circulating pressure (FCP), 62
fishing operations, 121
flanges and fittings, 106–109
float in drill string, 51–53
flow and choke fittings, 134–135
flow check, 16
flow checks, 41
flow line, 44
flow-line temperatures, 32
fluid pressure, 7
formation fluids, 2
formation fracture, 67
formation fracture and lost circulation, 20–24
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formation integrity. See formation fracture 
and lost circulation

formation pressure
about, 5–6
formation fracture and lost circulation, 
20–24
formation pressure gradients, 7–8
hole filling, 17–19
vs. hydrostatic pressure, 11–15
hydrostatic pressure vs., 11–15
monitoring, 6
normal and abnormal pressures, 9–10
pressure surges and swabbing, 15–16

formation pressure gradients, 7–8
formations, 5
formation types and mud loss, 23
fracture pressure, 20
free water, 27
full-opening safety valves (FOSVs), 51, 70, 	
105, 143

gas behavior and gas-cut mud, 45–47
gas charge, 133
gas-cut mud, 31, 45–47
gaskets, 109
gas migration, 61, 82, 86
gel strength, 14–15
glycol, 129
gradients, 51–53
gravity-flow trip tanks, 145
guide shoes, 110–111
gushers, 1

hanger plugs, 156
hangers, 112
hard shut-in, 79
hard shut-in well, 50
high formation pressure detection, 28
high pressure blowout assemblies, 108

hole in the drill pipe, 94
hook load, 3
hydraulic accumulators, 132
hydraulically-operated valves, 108
hydraulic high-pressure choke manifold, 134
hydraulic rig assist snubbing units, 96
hydraulic workover (HWO) unit, 96–97
Hydril-Type GK blowout preventers, 116
Hydril-Type V ram preventers, 119–120
hydrostatic head, 14
hydrostatic pressure, 2, 7, 8
circulating pressure, 14–15
vs. formation pressure, 11–15

hydrostatic-pressure gradient, 8

ideal gas, 45
increase in flow while circulating, 42
induced kicks, 83
initial circulating pressure (ICP), 62
inside blowout preventers (IBOPs)
dart type, 142–143
drop type, 142–143

internal blowout preventers. See inside 
blowout preventers (IBOPs)

internal diameter (ID), 13
International Association of Drilling 
Contractors (IADC), 60

jet nozzles, 14
joints. See tool joints

kelly, 41
kelly cocks, 140–141
test sub, 155

kick
causes of, 15
defined, 2
signs of, 4Petr
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kick control, offshore operations
about, 77
controlling kick from a floating rig with 
competent casing set, 79
diverter bop systems, 78
procedure to control the well with a 
diverter system, 79

kick control, special problems, 81–101
kicks with the drill pipe out of the hole, 82–86
shallow gas formations, 81
in snubbing operations, 96–99
stripping into the hole, 86–93
stripping out of the hole, 94–95

kick detection, 37–48
decrease in circulating pressure, 43–44
drilling break, 42
gas behavior and gas-cut mud, 45–47
increase in flow while circulating, 42
mud flow from the well, 41
pit gain, 39–40
shows of gas, oil, or salt water, 44

kick indicators, 37–38
kicks with drill pipe off bottom, 70–71
reverse circulation, 71
top kill (volumetric), 70–71

kicks with the drill pipe out of the hole, 82–86
killing a well kick
about, 49
bullhead kill method, 67–68
concurrent method, 67
controlling a well kick while making a trip, 
51
driller’s method, 55–61
driller’s method for, 55
drill pipe as a bottomhole pressure 	
gauge, 51–53
dynamic kill method, 68
engineer’s method, 62–67
kicks with drill pipe off bottom, 70–71

mistakes in well control, 72–73
momentum kill method, 69
slow pump rate, 54
steps to control an onshore well kick if on 
bottom while drilling, 50
wait-and-weight method, 62–67

kill lines, 106, 136
kill sheet, 62
kill-weight mud, 55–56, 66

leak-off test, 20
liners, 18
logs, 28, 32–33, 35
loss zone, 23
lost circulation, 20, 23, 98–99
lost-circulation material, 99
lost returns, 20
lower kelly cock, 140–141
lube-and-bleed method, 70, 82
Lucas Anthony F., 1

make hole, 3
managed pressure drilling (MPD), 127
Marine Riser System and Subsea Blowout 

Preventers (PETEX), 78
master control panels, 128
mistakes in well control
constant choke-pressure method, 73
constant pit-level method, 72
excessive mud weight, 73
pulling into the casing, 72

momentum kill method, 69
mud, 7, 13–24, 28–29, 32–34, 37–47, 51–59, 
61–62, 65–67

mud flow, 41
mud-flow indicators/sensors, 149
mud-gas separator, 54
mud-handling equipment, 137–139
mud logs, 28, 31
mud loss and formation types, 23
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mud pits, 18
mud return flow rate, 42
mud return line, 38
mud riser and fill-up connections, 125–127
mud risers, 125
mud temperature increase, 32
mud-weight
calculations of, 74–75
concurrent method, 67
differential pressure, 25
equivalent, 20
excessive, 73
fluid density, 8, 24
formation pressure control, 22, 53
fracture pressure, 23, 31
kick and, 37
killing a well kick, 50, 70, 82–83
loss of, 47
maximum, 23
mud temperature increase, 32
normalized penetration rate, 29
pressure surging, 15
stripping in procedure, 90, 93
wait-and-weight method, 62–67

naturally-fractured formation, 98
nippled-up connection, 114
nitrogen, 133
NL Shaffer ram preventers, 119–120
nomagraphs, 90
normalized penetration rate (d-exponent), 29
normal-rate trend, 28
nozzles, 14

offshore, 77
open hole, 83
operating equipment, 128–133
operating pressure control, 56
operating pressure source, 128

operating pressure standards, 133
outer diameter (OD) drill collars, 13
“out-running the well” kills, 69
overbalance, 9
overburden, 10
overburden pressure, 10
overkill, 73
overpressurized formations, 28, 42
oxygen, 133

packers, 117
permeability, 26
permeable rocks, 26
pipe ram blowout preventers, 117–122
pipe rams, 117
pit gain, 3, 39–40
pit level, 40
pit-level change, 17
pit-level indicators, 40
pit-level indicators and pit-volume 	
recorders, 146–147

pit-volume increase, 65
plugged pipe or bit, 94–95
plugs, 94, 106, 148, 156
pores, 26–27
porosity, 25
porous rocks, 25
positive-displacement meters, 18
pounds per gallon (ppg), 8
pounds per square inch (psi), 47
pounds per square inch per foot (psi/ft), 8
power rigs, 128
preliminary procedures for stripping in, 86
pressure, 2
pressure changes, 15
pressure gradient, 7
pressure loss, 13
pressure overbalance, 9
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pressure ratings, 106
pressure surges and swabbing, 15–16
pressure surging, 15
preventer equipment, 103–152
about, 103–105
annular blowout preventers, 115–117
auxiliaries, 140–143
casing and wellheads, 110–114
drilling spools/ flow cross, 122–124
flanges and fittings, 106–109
flow and choke fittings, 134–135
kill lines, 136
mud-handling equipment, 137–139
mud riser and fill-up connections, 125–127
operating equipment, 128–133
pipe ram blowout preventers, 117–122
pressure ratings, 106
rotating heads, 127–128

preventer operating pumps, 130
preventer tests and drills
about, 153–154
blowout preventer drills, 158–159
cup or packer tests, 157–158
testing on casing, 154–155
testing procedures, 154
testing with a hanger plug, 156

procedure to control the well with a diverter 
system, 79

pulling into the casing, 72
pump stroke count, 17
pump stroke counters, 148

rams, 87
ram-to-ram stripping, 91–92
ram-type blowout preventers, 115
rate of penetration (ROP), 28
reciprocating pumps, 18

Recommended Practices for Blowout Prevention 
Equipment Systems for Drilling Wells (API). 
See API RP 53 (American Petroleum Institute 
standards)

reduced circulating pressure, 65
regulator valves, 87
remote choke panels, 135
remote control panels, 131, 135
reservoir pressure, 2
resistivity, 32
reverse circulation, 71
ring gaskets, 114
ring-joint flanges, 109
roller cone bit, 94
rotary, 41
rotary drills/drilling, 1, 2
rotary tables, 128
rotating heads, 103, 127–128

seismic data, 28
settling pit, 139
shale, 10
shale characteristics, 32
shale compaction, 25–27
shale density, 30
shale shakers, 56
shallow gas formations, 81
shearing
of drill pipe, 118
of tubing, 118

shear rams, 118
short way, 71
show, 44
show gas, 31
show of gas, oil, or salt water, 44
shut-in, 50, 79
shut-in casing pressure (SICP), 53, 55, 65
shut-in drill pipe pressure (SIDPP), 51–53, 65
signs of blowouts, 3, 79
siphons, 139Petr
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skid-mounted assemblies, 130
slips, 96, 143
sloughing shale, 30
slow pump rate, 54
snubbing, 71, 82
snubbing operations, 96–99
snubbing units, 89, 96
soft shut-in, 50, 79
soft shut-in well, 50
Spindletop, Texas, 1
squeeze cementing, 20
stack, 89
stand-alone unit, 96, 97
standpipe, 56
stands of pipe, 16
starter heads, 114
stationary slips, 96
steps to control an onshore well kick if on 	
bottom while drilling, 50

stripping in, 71
stripping into the hole
with annular preventer, 87–90
preliminary procedures for stripping in, 86
ram-to-ram stripping, 91–92
stripping with ram preventers, 91–92
surface pressure conditions, 86
volumetric displacement correction for 	
casing pressure, 92–93

stripping out, 94
stripping out of the hole
hole in the drill pipe, 94
plugged pipe or bit, 94–95

stripping with ram preventers, 91–92
strokes per minute (spm), 54
stuck pipe, 61
subsea blowout preventers (BOPs), 77–78
subsea wells, 99
suction pit, 62
surface casing, 110, 117

surface pressure conditions, 86
surge bottles, 88
surging, 15
swab, 158
swabbed shows, 44
swabbing, 15
swivel, 140. See also kelly

targets, 106
tees, 106
test packers, 157–158
test sub, 155
TIW valve, 70
tool joints
annular blowout preventers (BOPs), 115
pipe rams, 118, 121
snubbing operations, 87, 96
stripping the joint, 87, 91–92, 100

top kill (volumetric), 70–71
total friction losses. See circulation pressure
tour, 54
traveling slips, 96
trip gas, 31
triplex pumps, 18
trip margin, 16
trips, 16
trip shows, 44
trip tanks, 17, 145
true vertical depth (TVD), 7
tubing, 71
shearing of, 118

tubing head fittings, 71

unconsolidated formation, 25
underbalanced drilling (UBD), 9, 128
underbalanced wells, 9
underground blowout, 98
upper kelly cock, 140
U-tube, 54
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vacuum degassers, 138, 144
variable bore rams (VBRs), 117
vent lines, 78–79, 105, 124, 139, 144
viscosity, 14
volumetric correction, 92
volumetric displacement correction for casing 
pressure, 92–93

volumetric method, 16
vugular formation, 98

wait-and-weight method, 62–67. See also 
engineer’s method
disadvantages of, 66

warning signs, 79
wellbores, 2
well-control problems, 42
wellheads, 46, 112–113
well pressure, 2
wireline, 94
workover service, 39–40
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To obtain additional training materials, contact:

PETEX
The University of Texas at Austin

Petroleum Extension Service
10100 Burnet Road, Bldg. 2

Austin, TX 78758

Telephone: 512-471-5940
or 800-687-4132

FAX: 512-471-9410
or 800-687-7839

E-mail: petex@www.utexas.edu
or visit our Web site: www.utexas.edu/ce/petex

To obtain information about training courses, contact:

PETEX
Learning and assessment center

The University of Texas
4702 N. Sam Houston Parkway West, Suite 800

Houston, TX 77086

Telephone: 281-397-2440
or 800-687-7052

FAX: 281-397-2441
E-mail: plach@www.utexas.edu

or visit our Web site: www.utexas.edu/ce/petex
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